Law of Diffusion of Gases

Thomas Graham studied the behavior of the diffusion of gases of unequal densities when placed in contact with each other, using air as his control. He wanted to numerically prove how the diffusion of the gas volumes was inversely proportional to the value of the density of the gas, under constant temperature and pressure.

The significance of this experiment was that in led to a reevaluation of the concept of the movement of matter, realizing that diffusion dealt with small immeasurable elements of matter, as opposed to large volumes of air, as perceived in the corpuscular theory, shedding light into the study of the behavior and structure of matter. Graham’s initial objective was to establish a numerical value regarding the gas density and its diffusiveness for ten different gases, establishing that the greater the gas’s density the smaller the value and rate of diffusiveness compared to air.

He predicted that gases moved by diffusion when placed together in the form of minute volumes, were the heavier gas would tend to accumulate on one side while the lighter gas displaced towards the denser gas until a uniform mixture was achieved. In light of this, he predicted that if controlling temperature and pressure he would achieve the gases to diffuse and establish a numerical value. However no hypothesis was established based on the limited information at their disposal of matter.

However seeing how gases diffused proportionately despite the aperture size, Graham perceived that diffusion dealt with minute particles as opposed to large volumes. The gas’s diffusion volume was achieved once the gas inside the stucco container was entirely replaced by external air, being this new volume the equivalent volume of diffusion. Once established the volume, he used his law of diffusion to provide a numerical value and verify the exactness of his formula.

This was achieved by observing the change in height of the level of mercury. The use of a stucco plug channel containers was suitable to lessen the effect of gas absorption by the material and avoid the gas’s expansion or contraction when atmospheric conditions varied; in addition to this the fact that temperature and pressure were kept constant meant the movement of the gases was because of simple diffusion and not by an external force.

Using air as a unit measure, meant variations in duplicability of results due to the air’s heterogeneous nature making the experiment inconclusive. They used air as their measure unit since they did not have the technology to test the direct interaction of single separate samples of gases, being unable to study properly their behavior. This experiment was accurate when comparing the results with the theoretical values, and consistent to previous experimental observations.

The results showed to be always below the theory value explained by means of their materials absorption nature and slight variations in conditions and instrument’s precision. Despite this Graham was able to establish a clear numerical relationship using equivalent diffusion volumes, however with slight exceptions to certain gases that had to be further tested. Graham’s prediction of being density a factor, which determined the diffusiveness of gas, was corroborated at the sight that lighter gases than air such as hydrogen diffused more easily.

In addition the accuracy of the results helped to determine the value of the gas’s gravity, which would further provide evidence for the study of matter. In addition the fact that intermixture of gases was achieved under controlled conditions, despite the size of contact surface, provided evidence of minute particle diffusion and led Graham to speculated further on the constituents of matter, not explained through the corpuscular theory, would lead to development of the colloid theory in the future.

In conclusion this research paper showed that Graham verified a numerical value for the diffusion of gases with varying densities. However Graham’s observations led him to further speculate on the idea that diffusion was related to immeasurable elements, as opposed to sensible volumes. This paper provides valuable evidence on how the study and discovery of minute particles evolved as the corpuscular theory failed to explain the nature of matter.

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with MyhomeworkGeeks
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Leadership Studies
excellent job as always
Customer 452773, September 2nd, 2023
Business and administrative studies
Thank you for your hard work and effort. Made a 96 out of 125 points Lacked information from the rubic
Customer 452773, October 27th, 2023
business
Thank you for your hard work and help.
Customer 452773, February 13th, 2023
10th grade English
very good
Customer 452773, March 26th, 2023
Human Resources Management (HRM)
excellent
Customer 452773, July 11th, 2023
Business and administrative studies
Excellent job
Customer 452773, March 17th, 2023
Social Work and Human Services
Great work I would love to continue working with this writer thought out the 11 week course.
Customer 452667, May 30th, 2021
English 101
great summery in terms of the time given. it lacks a bit of clarity but otherwise perfect.
Customer 452747, June 9th, 2021
Business and administrative studies
excellent work
Customer 452773, March 9th, 2023
Philosophy
Thank you
Customer 452811, February 17th, 2024
Business and administrative studies
Thank you for your hard work
Customer 452773, October 19th, 2023
Business and administrative studies
excellent job thank you Your Score 166.25/ 175- A 1. Current Culture 15% of total grade 18.37 Criterion "1. Current Culture" has textual feedback Criterion Feedback I see interesting points, though, in general they are not about the culture.
Customer 452773, June 4th, 2023
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
Close

Sometimes it is hard to do all the work on your own

Let us help you get a good grade on your paper. Get professional help and free up your time for more important courses. Let us handle your;

  • Dissertations and Thesis
  • Essays
  • All Assignments

  • Research papers
  • Terms Papers
  • Online Classes
Live ChatWhatsApp