Manufacturing alumina

The production of aluminum begins with the mining and beneficiation of bauxite. At the mine (usually of the surface type), bauxite ore is removed to a crusher. The crushed ore is then screened and stockpiled, ready for delivery to an alumina plant. At the alumina plant, the bauxite ore is further crushed or ground to the correct particle size for efficient extraction of the alumina through digestion by hot sodium hydroxide liquor. After removal of “red mud” (the insoluble part of the bauxite) and fine solids from the process liquor, aluminum trihydrate crystals are precipitated and calcined in rotary kilns or fluidized bed calciners to produce alumina (Al2O3). (Bounicore & Wayne 1992)
Some alumina processes include a liquor purification step. Primary aluminum is produced by the electrolytic reduction of the alumina. The alumina is dissolved in a molten bath of fluoride compounds (the electrolyte), and an electric current is passed through the bath, causing the alumina to dissociate to form liquid aluminum and oxygen.
The oxygen reacts with carbon in the electrode to produce carbon dioxide and carbon monoxide. Molten aluminum collects in the bottom of the individual cells or pots and is removed under vacuum into tapping crucibles. . Depending on the desired application, additional refining may be necessary. For demagging (removal of magnesium from the melt), hazardous substances such as chlorine and hexachloroethane are often used, which may produce dioxins and dibenzofurans. (Bounicore & Wayne 1992)

Industrial forms of aluminum include commercially pure metal and alloys with other metals such as chromium, copper, iron, magnesium, manganese, nickel, titanium and zinc. Aluminum alloys may contain as much as fifteen percent of the alloying metals. In powder form, aluminum and its alloys are combustible in air and present a potential explosion hazard. In sheet or block forms, aluminum will not normally propagate or sustain combustion. (Metals & Alloys, 1976)
Hazards and Risks Entail in Processing
At the bauxite production facilities, dust is emitted to the atmosphere from dryers and materials- handling equipment, through vehicular movement, and from blasting. The dust is not hazardous; it can be a nuisance if containment systems are not in place, especially on the dryers and handling equipment. Other air emissions could include nitrogen oxides (NOx), sulfur dioxide (SO2), and other products of combustion from the bauxite dryers. (Paris Com, 1992)
Ore washing and beneficiation may yield process wastewaters containing suspended solids. Runoff from precipitation may also contain suspended solids. At the alumina plant, air emissions can include bauxite dust from handling and processing; limestone dust from limestone handling, burnt lime dust from conveyors and bins, alumina dust from materials handling, red mud dust and sodium salts from red mud stacks impoundments), caustic aerosols from cooling towers, and products of combustion such as sulfur dioxide and nitrogen oxides from boilers, calciners, mobile equipment, and kilns. The calciners may also emit alumina dust and the kilns, burnt lime dust. Although alumina plants do not normally discharge effluents, heavy rainfalls can result in surface runoff that exceeds what plant can use in process. (Brady & Humiston, 1982)
Hydrogen Generating Reactions
Aluminum is a very reactive metal, and the greatest industrial hazards associated with aluminum are chemical reactions. Aluminum is an excellent reducing agent, and should react with water readily to liberate hydrogen. However, the protective aluminum oxide coating protects it from reaction with moisture or oxygen. If the protective coating is broken, for example, by scratching or by amalgamation (the process of coating with a film of mercury in which the metallic aluminum dissolves; the aluminum oxide coating does not adhere to the amalgamated surface), rapid reaction with moisture and/or oxygen can occur.
The significance of this reaction is dependent upon the quantity of aluminum available to react. Aluminum is also oxidized by heat at a temperature dependent rate. (Ogle, Beddow, Chen, Butler, 1982) Aluminum metal is amphoteric (exhibits both acidic and basic characteristics). Therefore, aluminum will react with acids or bases; both reactions liberate hydrogen, a flammable gas. However, aluminum does not react with concentrated nitric acid because the oxidizing potential of the acid contributes to the formation of the protective aluminum oxide coating. (Martin, 1976)
Thermite Reactions
Aluminum readily extracts oxygen from other metal oxides to form aluminum oxide with the simultaneous release of large amounts of heat (enough heat to melt the products of the reaction). For example, the reaction of aluminum with ferric oxide to produce liquid aluminum oxide and liquid iron produces temperatures approaching 3000°C (5400°F). This reaction, referred to as the “thermite reaction,” has been used to weld large masses of iron and steel; when enclosed in a metal cylinder and ignited by a ribbon of magnesium has been used in incendiary bombs; and, with ammonium perchlorate added as an oxidizer, has provided the thrust for the space shuttle booster rockets. (May & Berard, 1987)
Dust Explosions
A dust explosion is a complex phenomenon involving simultaneous momentum, energy, and mass transport in a reactive multi-phase system. Aluminum particles, when in dust, powder, or flake forms from operations such as manufacturing powder, grinding, finishing, and processing, may be suspended as a dust cloud in air and consequently may ignite and cause serious damage.
If the dust cloud is unconfined, the effect is simply one of flash fire. If, however, the ignited dust cloud is at least partially confined, the heat of combustion may result in rapidly increasing pressure and produce explosion effects such as rupturing of the confining structure. Aluminum dust is not always easily ignitable, and, therefore, the hazard of dust explosions is often ignored. Minimum explosive concentrations of aluminum dust have been reported upwards from about 40 grams per cubic meter (0.04 ounces per cubic foot) of air. (May & Berard, 1987)
Effects on Health
Aluminum particles deposited in the eye may cause local tissue destruction. Aluminum salts may cause eczema, conjunctivitis, dermatoses, and irritation of the upper respiratory system via hydrolysis-liberated acid. Aluminum is not generally regarded as an industrial poison, although inhalation of finely divided aluminum powder has been reported as a cause of pneumoconiosis. In most investigative cases, however, it was found that exposure was not solely to aluminum, but to a mixture of aluminum, silica, iron dusts, and other materials.
Aluminum in aerosols has been referenced in studies involving Alzheimer’s disease. Most exposures to aluminum occur in smelting and refining processes. Because aluminum may be alloyed with various metals, each metal (e.g., copper, zinc, magnesium, manganese, nickel, chromium, lead, etc.) may possibly present its own health hazards. (Buonicore & Davis, 1992)
Implication
Aluminum dust is strongly fibrogenic. Metallic aluminum dust may cause nodular lung fibrosis, interstitial lung fibrosis, and emphysema as indicated in animal experimentation, and effects appear to be correlated to particle size of the dust30; however, when exposure to aluminum dusts have been studied in man, most exposures have been found to be to other chemicals as well as aluminum. (Buonicore & Davis, 1992)
Safety Measures: Prevention and Control
The American Council of Governmental Industrial Hygienists (ACGIH) recommends the need for five separate Threshold Limit Values (TLVs) for aluminum, depending on its form (aluminum metal dust, aluminum pyro powders, aluminum welding fumes, aluminum soluble salts, and aluminum alkyls). The Occupational Safety and Health Administration (OSHA) has also established Permissible Exposure Limits (PELs) for aluminum. (May & Berard, 1987)
Pollution prevention is always preferred to the use of end-of-pipe pollution control facilities. Therefore every attempt should be made to incorporate cleaner production processes and facilities to limit, at source, the quantity of pollutants generated. In the bauxite mine, where beneficiation and ore washing are practiced, tailings slurry of 7– 9% solids is produced for disposal.
The preferred technology is to concentrate these tailings and dispose of them in the mined-out area. A concentration of 25–30% can be achieved through gravity settling in a tailings pond. The tailings can be further concentrated, using a thickener, to 30–50%, yielding a substantially volume reduced slurry. The alumina plant discharges red mud in slurry of 25–30% solids, and this also presents an opportunity to reduce disposal volumes. (May & Berard, 1987)
Today’s technology, in the form of high-efficiency deep thickeners, and large-diameter conventional thickeners, can produce a mud of 50–60% solids concentration. The lime used in the process forms insoluble solids that leave the plant along with the red mud. Recycling the lime used as a filtering aid to digestion to displace the fresh lime that is normally added at this point can minimize these lime-based solids. Finally, effluent volume from the alumina plant can be minimized or eliminated by good design and operating practices: reducing the water added to the process, segregating condensates and recycling to the process, and using rainwater in the process. (Ogle, Beddow, Chen, Butler, 1982)
References
Brady, James E. and Humiston, Gerard E. (1982), General Chemistry: Principles and Structure,
Third Edition, John Wiley and Sons, New York.
Bounicore, Anthony J., and Wayne T. Davis, eds. (1992), Air Pollution Engineering Manual.
New York: Van Nostrand Reinhold.
Martin, R. (1975), “Dust-Explosion Risk with Metal Powders and Dusts,” P/M Group Annual
Meeting 1975: Handling Metal Powders, Session I: Health and Safety in Powder
Handling,” Powder Metallurgy, No. 2.
May, David C., and Berard, David L. (1987), “Fires and Explosions Associated with Aluminum
Dust from Finishing Operations,” Journal of Hazardous Materials, 17.
“Metals and Alloys,” (1976), Loss Prevention Data 7-85, Factory Mutual Engineering
Corporation.
Paris Commission. (1992), “Industrial Sectors: Best Available Technology—Primary Aluminium
Industry.”
Ogle, R. A., Beddow, J. K., Chen, L. D., and Butler, P. B. (1988), “An Investigation of
Aluminum Dust Explosions,” Combust. Sci. and Tech.
 

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with MyhomeworkGeeks
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Human Resources Management (HRM)
excellent, great job
Customer 452773, June 19th, 2023
Philosophy
Thank you
Customer 452811, February 17th, 2024
FIN571
excellent work
Customer 452773, March 1st, 2024
Business and administrative studies
excellent job!
Customer 452773, May 25th, 2023
Leadership Studies
excellent job
Customer 452773, August 26th, 2023
Human Resources Management (HRM)
excellent work
Customer 452773, July 3rd, 2023
Psychology
Thank you!
Customer 452545, February 6th, 2021
Human Resources Management (HRM)
excellent
Customer 452773, July 11th, 2023
Nursing
thank you so much
Customer 452749, June 10th, 2021
Human Resources Management (HRM)
excellent job
Customer 452773, June 25th, 2023
History
Looks great and appreciate the help.
Customer 452675, April 26th, 2021
Business and administrative studies
Thank you
Customer 452773, March 19th, 2023
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
Close

Sometimes it is hard to do all the work on your own

Let us help you get a good grade on your paper. Get professional help and free up your time for more important courses. Let us handle your;

  • Dissertations and Thesis
  • Essays
  • All Assignments

  • Research papers
  • Terms Papers
  • Online Classes
Live ChatWhatsApp