Riluzole in the treatment of Lou Gehrig’s disease

Introduction
Lou Gehrig’s disease is often referred to as Amyotrophic lateral sclerosis (ALS), this is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. Motor neurons come from the brain to the spinal cord and from the spinal cord to the muscles throughout the entire body. The progressive degeneration of the motor neurons in ALS would eventually leads to their death. When the motor neurons die, the ability of the brain to initiate and control muscle movement is also lost. With voluntary muscle action progressively affected, for this reason patients in the later stages of the disease may become totally paralyzed (Choi, 1988).
ALS is led to mean no muscle nourishment. When a muscle has no nourishment, it atrophies or wastes away hence the name. In addition to this, lateral shows the areas in a person’s spinal cord where part of the nerve cells that signal and control the muscles are located. As this area degenerates, it leads to scarring or hardening (sclerosis) in this particular region.

As motor neurons degenerate, this obviously means they can no longer send impulses to the muscle fibers that otherwise normally result in muscle movement. Early symptoms of ALS often include increasing muscle weakness, especially involving the arms and legs, speech, swallowing or breathing. When muscles no longer receive the messages from the motor neurons that they require to function, the muscles begin to atrophy (become smaller). Limbs begin to look thinner as muscle tissue atrophies (Choi, 1988).
Neurodegeneration is used mainly for diseases that are characterised by progressive loss of structure and function of neurons. There are many neurodegenerative diseases including amyotrophic lateral sclerosis that occurs as a result of neurodegenerative processes in selective areas. Several molecular studies have been designed both in animal models and in humans to determine the physiopathology of the disease in order to develop new approaches for neurodegeneration. ALS is a neurological disease of unknown origin which is characterised by a selective degeneration and death of upper and lower motor neurons this progresses to paralysis and death over a period of time.
ALS diagnosis is based on the El Escorial criteria carried out on mainly clinical and electrophysiological findings in four body regions. Also around 95% of ALS patients are sporadic whereas 5% are familial. In this particular group approximately 15% are caused by mutations in the SOD one gene that codes for the CuZn superoxide dismutase-1 (Bensimon, 1994). This is an enzyme that catalyzes the dismutation of superoxide to molecular oxygen and hydrogen peroxide. The symptoms and pathology of familial ALS patients with SOD1 mutations resemble those of patients with sporadic ALS. This suggests there are common mechanisms of neuron degeneration in both forms of the diseases. Several potential mechanisms of motor neuron degeneration in ALS have been projected. These include the involvement of environmental and genetic factors, autoimmune phenoma, increased oxidative stress, glutamate toxicity, viral infections, mitochondrial dysfunction and cytoskeletal abnormalities. This means that each mechanism involvedin the pathogenesis of ALS may represent a possible thjerapeutic approach to counteract neurodegeneration.
Glutamate is the primary excitatory neuro transmitter in the central nervous system which acts at both iono-tropic and metabotropic receptors, the primary ionotropic receptor classes being N-methyl-D-aspartic acid (NMDA) and (AMPA)/kainite. Extracellular glutamate levels are regulated by transporters, they have different transporter classes on neurons and on astrocytes, however most of the glutamate uptake appears to be mediated astrocytes. Excessive glutamate exposure is toxic to neurons which is most likely that is results from glutamate triggeredCa2+ entering the neurons. Also inhibitors of glutamate uptake can cause selective motor neuron damage in organotypic slice and in dissociated spinal cord culture models. This suggests that the increased extracellular glutamate concentration could add to motor neuron damage in ALS. Furthermore, observations of deficient glutamate transport capacity in affected regions of spinal cord and motor cortex show a likely reason for the rises in extracellular glutamate concentration.
The only drug proven to slow the process of human ALS is the anti-excitotoxic compound Riluzole, which is an anti-convulsant and a neuro-protective agent and specifically blocks sodium channels in their inactivated states. This inhibits the release of glutamate by inactivating voltage dependent Na+ channels that are on the glutamatergic nerve terminals as well as activating a G-protein dependant signal transduction process, this slows down disease progression and in turn increases the patient’s survival rate. In addition to this Riluzole can also block some of the postsynaptic effects of glutamate, this is done by non-competitive inhibition at NMDA and AMPA receptors. For this reason a non competitive modulator of AMPA glutamate receptors has been used in clinical trials in ALS patients (Barbeito, 1996).
Several studies showed that also the clearance of glutamate from neuromuscular synapases is slowed down in patients with ALS due to the loss of a glutamate transporter which is the excitatory amino acid transporter 2, this is of huge importance for synaptic glutamate re-uptake. A loss of high-affinity glutamate transport transport has been identified in specific brain regions and spinal cord of patients with ALS (Bensimon, 1996). From the above these results suggest that the defect in glutamate transport could be responsible for high elevations in extracellular glutamate.
These results have supported the use of cephalosporins in ALS because of their antiexcitatory properties, this is done by increasing EAAT2 promoter activity. Also for human studiesthird generation ceftriaxone has been selected because of its superior CNS penetration and long half life. From this ceftriaxone observed a considerable improvement of antioxidant oxidative stress status in ALS patients after treatment.
Riluzole treatment has been tested in trials which examine tracheostomy free survival rate, this included 974 riluzole treated patients. In respect to this the methodological quality of the experiment was acceptable and the trails were easily comparable. The results show that riluzole 100mg per day would provide benefits to the homogenous groups of patients with no evidence of heterogeneity. Also there was a 9% gain in the probability of surviving one year. Furthermore there was a small beneficial effect on both bulbar and limb functions but had no effect on muscle strength. Another significant effect which is represented in these results are a threefold increase in serum alanine transferase, this was more frequent in riluzole treated patients than the controls in the experiment (Wahl, 1997).
In conclusion Riluzole 100mg daily is fairly safe and most likely prolongs median surbival by around two to three months in patients with amyotrophic lacteral sclerosis. However more research needs to be done to treat Lou Gehrigs disease such as different therapeutic strategies and oxidative stress in ALS can be looked at in further depths.
References
Barbeito, L. Estevez, A. and Stutzmann, J. Peluffo, H. (1996) Riluzole promotes motoneuron survival by stimulating neurotrophic activity produced by spinal astrocyte monolayers, J. Neurotrauma, 13: 629.
Bensimon, G., Lacomblez, L., Meininger, V. (1994). A controlled trial of riluzole in amyotrophic lateral. sclerosis, New Engl. J. Med., 330 : 585–591.
Choi, D. (1988). Glutamate neurotoxicity and diseases to the nervous system. Neuron, 1: 523–634.
Bensimon, G. Guillet, P. Lacomblez, L. Leigh, P. Meininger,V. (1996). Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet, 347: 1425–1431.
Mary, V. Wahl, F. Stutzmann, M. (1995). Effect of riluzole on quinolinate-induced neuronal damage in rats: comparison with blockers of glutamatergic neurotransmission. Neurosci Lett. 201: 92–96.
Wahl, F. Renou, E. Stutzmann, J. (1997). Riluzole reduces brain lesions and improves neurological function in rats after a traumatic brain injury. Brain Research, 756: 247–255.

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with MyhomeworkGeeks
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Business and administrative studies
excellent job thank you Your Score 166.25/ 175- A 1. Current Culture 15% of total grade 18.37 Criterion "1. Current Culture" has textual feedback Criterion Feedback I see interesting points, though, in general they are not about the culture.
Customer 452773, June 4th, 2023
Leadership Studies
excellent job as always
Customer 452773, September 2nd, 2023
Business and administrative studies
Perfect
Customer 452773, February 23rd, 2023
DATA565
The support team was late responding , my paper was late because the support team didn't respond in a timely manner. The writer of the paper finally got it right but seems there was a problem getting the revisioin to me.
Customer 452773, April 7th, 2024
Social Work and Human Services
Although it took 2 revisions I am satisfied but I did receive it late because of that.
Customer 452603, March 25th, 2021
Human Resources Management (HRM)
excellent, great job
Customer 452773, June 19th, 2023
Business and administrative studies
perfect
Customer 452773, February 23rd, 2023
Business and administrative studies
Thank you for your hard work and help
Customer 452773, February 21st, 2023
FIN571
excellent
Customer 452773, March 15th, 2024
History
Looks great and appreciate the help.
Customer 452675, April 26th, 2021
Nursing
Impressive writing
Customer 452547, February 6th, 2021
Data 564
excellent work
Customer 452773, April 11th, 2024
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
Close

Sometimes it is hard to do all the work on your own

Let us help you get a good grade on your paper. Get professional help and free up your time for more important courses. Let us handle your;

  • Dissertations and Thesis
  • Essays
  • All Assignments

  • Research papers
  • Terms Papers
  • Online Classes
Live ChatWhatsApp