The Simple Pendulum Lab

Table of contents

Objective

The objective of this experiment is to examine the simple harmonic motion and to determine the value of the acceleration due to gravity from the analysis of the period of the simple pendulum. [1]

Background

There are three equations that will be used to calculate the period of motion of the simple pendulum. They are the slope of the line of the graph of Tπ against L, and the gravity of the pendulum motion.

The period of the motion is the time needed for one complete cycle that a pendulum bob swings from the initial position to the other end, and then back to the initial position.

[1] The equation to calculate the period is, T = 2² Lg

Where,  T = Period of the motion, measured in s.

L = Length of the pendulum, measured in cm.

g = Acceleration due to gravity, measured in m/s2. The slope of the line in the graph of T² against L can be used to determine the gravity of the pendulum motion. It is because,

y = mx

m = T² L= 4π² g = Slope of the line in the graph T² /L.

Therefore, to find the gravity of the pendulum motion, we can use the slope of the graph.

The slope of the graph is given by the formula, g = 4π² m g = Acceleration due to gravity, measured in m/s².

Procedure and Observations

Materials:

  • String
  • Metre Stick
  • Stopwatch
  • Stand
  • Pendulum bob

Procedure:

  1.  The materials listed above were taken for the experiment.
  2. The pendulum bob was tied tightly with the string.
  3. The string with the pendulum bob was hung on the stand.
  4. A meter stick was used to measure the distance between the center of mass of the bob and the top of the string.
  5. The distance was recorded in the observation table.
  6. The pendulum ball was held at a distance from the center and it was released.
  7. A stopwatch was used to time the time needed to complete ten cycles.
  8. The time was recorded in the observation table.
  9. Steps 4-7 were repeated four more times with different lengths.

Observations:

L (m) 10T (s)
0.185 9.01
0.39 14.13
0.595 15.04
0.79 17.58
1 19.67

Diagram of the Pendulum

Figure [ 1 ] Calculations and Results Method 1 – Graph of T2 vs. L Data collected

L(m) T2(s2)
0.18 0.81
0.39 1.99
0.59 2.37
0.79 3.09
1 3.86

Hand drawn graph

∆x

∆y

Figure [ 2 ]

The slope can be determined by m=∆x∆y.

So, by taking a value for x

x = 0.4 cm

y must then be

y = 1.4 cm

m= 1.4 cm0.4 cm

m=3.5

The error would be given by

∆mm= ∆x1x12+ ∆x2x22

∆m= m 0.051.42+ 0.050.42

∆m= 3.5 0.051.42+ 0.050.42

∆m=0.45

The acceleration due to gravity is given by

g=4π2m

g=4π23.5

g=4π23.5

g=11.3 m/s2

Calculating the error for g would yield

∆gg= ∆mm2

∆g= g 0.453.52

∆g= 11.30.453.52

∆g= 1.45 m/s2

g=11.3 m/s2 ± 1.45 m/s2

Solving for the percentage deviation would give

% deviation= Actual value-Expected valueExpected value* 100%

Expected value=9.8 m/s2

% deviation= 11.3 m/s2-9.8 m/s29.8 m/s2*100%

% deviation= 11.3 m/s2-9.8 m/s29.8 m/s2*100%

% deviation= 15.3%

Method 2 – Linear Regression

Excel graph

Figure [ 3 ]

The equation of the line is given by T2 = 3.53L + 0.33

Where

m=3.53

The acceleration due to gravity is given by

g=4π2m

g=4π23.53

g=4π23.53

g=11.1 m/s2

Solving for the percentage deviation would give

% deviation= Actual value-Expected valueExpected value* 100%

Expected value=9.8 m/s2

% deviation= 11.1 m/s2-9.8 m/s29.8 m/s2*100%

% deviation= 11.1 m/s2-9.8 m/s29.8 m/s2*100%

% deviation= 13.2%

Conclusion

By comparing these two methods of calculating the acceleration due to gravity it is clearly noticeable that there is a difference between the two, when it comes to the accuracy. When calculating g using the hand drawn graph method it yielded =11. m/s2 ± 1. 45 m/s2. However, when using the linear regression method on excel, it yielded g=11. 1 m/s2. This is clearly closer to the expected value of 9. 8 m/s2. There are several reasons contributing to the conclusion that linear regression is more accurate, than measuring calculating the slope off of a hand drawn graph. First of all, computers are much more accurate than humans. There is no denying the fact that humans are not perfect and no hand drawn graph will be as precise as a computer drawn graph.

A ruler was being used, which may lead to believe that the line is perfectly straight, whereas it is actually not. This is clearly noticeable when one zooms in on a hand-drawn graph. Another problem with the ruler is that no matter how hard one tries to measure the distance between two different points, one will never be able to get the exact distance. Computers, however, Excel, in this case, draw perfectly straight lines. Also the location of the line of best fit line, in the hand-drawn part of the experiment, was estimated, which obviously leads to an inaccurate result.

Excel, however, uses the calculation of linear regression to draw the line of best fit and this is extremely accurate since the exact slope is being calculated by Excel. It is clear that the method of linear regression is more accurate by looking at the percentage deviations for each method. The % deviation for the hand-drawn graph yielded 15. 3%, whereas the percentage deviation for the linear regression method only was 13. 2% Even though the linear regression method was more accurate than the hand-drawn method, there was still a pretty significant difference, between that value, namely g=11. m/s2, and the expected value of 9. 8 m/s2. This is due to a few sources of error when this experiment was conducted. One of the errors that contributed to this difference was that the length of the string was not exactly measured. Thus, the relation between the length and the period was wrong, leading to false results. Another reason that contributed to the inaccuracy was the fact that when the bob was not swinging the way it was supposed to. It was only supposed to have a linear motion, but it had a slightly circular motion, which of course lead to a longer period.

This again resulted in a wrong relationship between the period and the length, leading to the wrong result. There was another major aspect of the experiment that lead to this result. Namely the fact one could not tell where the bob actually started its swinging motion exactly; therefore the exact period could not be measured with the stopwatch. It is evident, however, that if these errors could have been avoided, the acceleration due to gravity could have been calculated very accurately using the method of linear regression.

References

  1. PCS 125 Laboratory Manual, 2008

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with MyhomeworkGeeks
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
business
Thank you for your hard work and help.
Customer 452773, February 13th, 2023
Business and administrative studies
Thank you for your hard work and effort. Made a 96 out of 125 points Lacked information from the rubic
Customer 452773, October 27th, 2023
Nursing
Impressive writing
Customer 452547, February 6th, 2021
Management
Love this writer!!! Great work
Customer 452597, April 5th, 2021
Nursing
I just need some minor alterations. Thanks.
Customer 452547, February 10th, 2021
Business and administrative studies
Thank you
Customer 452773, March 19th, 2023
English 101
IThank you
Customer 452631, April 6th, 2021
Criminal Justice
This has been the greatest help while I am recovering from an illness. Thank your team so much.
Customer 452671, May 2nd, 2021
fin571
EXCELLEN T
Customer 452773, March 21st, 2024
Leadership Studies
excellent job as always
Customer 452773, September 2nd, 2023
Business and administrative studies
Excellent job
Customer 452773, March 9th, 2023
Managerial Accounting & Legal Aspects of Business ACC/543
excellent work
Customer 452773, February 7th, 2024
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
Close

Sometimes it is hard to do all the work on your own

Let us help you get a good grade on your paper. Get professional help and free up your time for more important courses. Let us handle your;

  • Dissertations and Thesis
  • Essays
  • All Assignments

  • Research papers
  • Terms Papers
  • Online Classes
Live ChatWhatsApp